
����� 
����� ��������� �� �
� ���


������ 	� �������


������ ����


������ 	� �������


������ ����

����� 
����� ��������� �� �
� ���

1  Copyright IBM Corp. 1996

Permission is granted to SHARE Inc. to copy, reproduce or republish this
document in whole or in part for SHARE activities only.



2  Copyright IBM Corp. 1996

Definitions

� Object File: A generic term for a file containing
executable code, data, relocation information, a symbol
table, etc.  Object files on AIX are XCOFF (eXtended
Common Object File Format) files.

� Csect: the atomic unit of relocation.

� Module: The smallest, separately loadable and
relocatable unit.  A module must contain a loader
section.  Modules are loaded explicitly with exec() or
load() calls.  Modules are loaded implicitly when they are
dependents of another loaded module.  A module may
have an entry point and may export a set of symbols.

� Dependent Module: A module loaded automatically as
part of the process of loading another module.

� Executable: A module with an entry point.  An executable
may have exported symbols.



3  Copyright IBM Corp. 1996

Definitions...

� Shared Object: A module with the F_SHROBJ flag
turned on.

� Import File: An ASCII file that may be used in place of a
corresponding shared object as an input file to the ’ld’
command.

� Main Program: The initial module loaded by exec().

� Static Linking: Executing the ’ld’ command so that
shared objects are treated as (non–module) object files.
A shared object that has been stripped cannot be linked
statically.

Any object file that has not been stripped can be used as an
input file to the ’ld’ command.  Modules, except for
executables, may be added to an archive and loaded
directly.



4  Copyright IBM Corp. 1996

Conventional Static Linking

� Object files and archives are listed on command line.

� Entire object files are copied to the output file.

� Entire archive members are copied to the output file if
they resolve�undefined references at the time the
archive is read.

� Duplicate symbols are not allowed.

� Example:

cc –o main main.o sub.o

causes the command

ld –o main /lib/crt0.o main.o sub.o –lc

to be generated.  All of main.o and sub.o will be part of
the output�file.  Members of /usr/lib/libc.a will be part of

the output file if�they are referenced.



5  Copyright IBM Corp. 1996

Conventional Shared Objects

� A shared object (or shared library) is a loadable file,
distinct from its corresponding static archive, used
instead of the static archive by the linker.

� A shared object defines same set of names as static
archive, but the concept of distinct archive members is
lost.

� A shared object (like other object files) may contain
references to undefined symbols.

� A shared object may contain a list of other shared objects
that can be loaded to resolve undefined symbols.

� When a shared object is loaded, its names are added to
a flat namespace that can be used to resolve undefined
references from other shared objects and the main
program.



6  Copyright IBM Corp. 1996

Runtime Characteristics Of
Shared Objects On Other
Platforms

� Position–independent code is required.

� Shared object can be loaded at any address.

� Code (.text section) is mapped into a process’s address
space using copy–on–write semantics.  Runtime linking
may require a private copy of some .text pages.

� By default, calls to out–of–module functions are made
with indirect branches.



7  Copyright IBM Corp. 1996

Building Conventional Shared
Objects

� Source files must be compiled to position–independent
code.

� Special linker option is used

� –G

� Undefined symbols are allowed.

� Duplicate symbols from shared objects used as input
files are allowed.

� Names of shared objects listed on command line are
saved in output file for possible use at load time.

� All global names in input files are exported.

� Symbols resolved by definitions in shared objects are
left unresolved at link time.  They must be resolved at
load time.



8  Copyright IBM Corp. 1996

Building Conventional
Executables

� Position–independent code is not needed.

� Programs are linked to absolute runtime addresses and
cannot be relocated at load time.

� All global names are made visible, for possible use at
load time.

� Names of shared objects listed on command line are
saved in output file for possible use at load time.

� Duplicate symbols from shared objects used as input
files are allowed.

� Undefined symbols are not allowed.



9  Copyright IBM Corp. 1996

Execution Of Conventional
Programs Using Shared Objects

� Runtime linker is used to resolve undefined references.

� Undefined references are satisfied by first definition
found in main program or any shared object.

� Shared objects are searched in breadth–first search
order.



10  Copyright IBM Corp. 1996

AIX Static Linking

� Object files and archives are listed on command line.

� Csects containing referenced symbols are copied to the
output file. The entry point, exported symbols, and
symbols specified with –u flag define initial set of
referenced symbols

� Garbage Collection: Unreferenced csects are discarded

� Prelinked archives can be used

ld –r *.o

� Csects of archive members used if they provide first
definition for a symbol, even if first reference follows
archive on command line.

� Warnings printed for duplicate symbols, unless duplicate
comes from archive member.



11  Copyright IBM Corp. 1996

AIX Shared Objects

� A module that defines a set of names (in its
loader–section symbol table).

� Some global names in constituent object files may not be
exported.

� No references to undefined symbols exist.  Symbols
defined outside the shared object must be imported from
another shared object or defined as deferred imports.

� List of dependent modules is recorded in shared object.
At load time, all dependent modules must be loaded
successfully for loading of shared object to succeed.



12  Copyright IBM Corp. 1996

Building Aix Modules

� No special compiler flag is needed––all code is
position–independent.

� Export files required to define set of exported symbols.

� Undefined symbols are not allowed––all symbols should
be defined, perhaps by being imported from some other
shared object.

� Referenced shared objects from the command line are
included in the list of dependent objects in the output file.
Other shared objects from the command line are not
listed.



13  Copyright IBM Corp. 1996

Characteristics Of Aix Modules

� Position–independent code is always used.

� Modules are always relocated.  The .text and .data
sections are relocated independently.

� Code (.text section) is always read–only.

� Calls to out–of–module functions must be made with
indirect branches.



14  Copyright IBM Corp. 1996

Building AIX Shared Objects

� Shared objects are built in the same manner as other
modules, except that the linker option –bM:SRE is
required to cause the F_SHROBJ flag to be set.



15  Copyright IBM Corp. 1996

Building AIX Executables

� Executables are built in the same manner as other
modules, except that an entry point must be defined.

� Load–time origins are arbitrary.  All modules are
relocated at load time.



16  Copyright IBM Corp. 1996

Execution Of AIX Programs Using
Shared Objects

� No runtime linking.  System loader performs symbol
lookup and relocation.

� Two–level namespace associates imported symbols
with a particular dependent module.  Searching of all
modules to resolve undefined symbol is not done.
Therefore, load order is not defined.

� All dependents of the module must load successfully.

� Imported symbols must be exported from their defining
dependent module, as recorded in the loader section.

� Since imports are by module/symbol basis, multiple
symbols with the same name may exist.



17  Copyright IBM Corp. 1996

AIX Modules

� Interface View

� List of exported symbols

� List of dependent modules

� Table of imported symbols

� each symbol is associated with a dependent.

Imported Symbols
V
A
B
C

V from dependent #1
W from dependent #2
X from dependent #3
Y from dependent #4
Z deferred import

Exported Symbols

Libpath Information

List of Dependents

0: /mydir:/usr/lib:/lib

1: V.so
2: libW.a shr.o
3: /dir1/dir2 X.so
4: /dir3/dir4 libY.so

� Display this information with the dump command

dump –HTv module



18  Copyright IBM Corp. 1996

AIX Modules...

� Implementation View:

� List of symbols

� List of undefined symbols

A
B
C
D
E
F

Global Symbols
a
b
c
a
b
c

Local Symbols
V
W
X
Y
Z

Undefined Symbols

� Display this information with

dump –tv object_file



19  Copyright IBM Corp. 1996

Runtime Context

� IAR (instruction address register) gives addressability to
code.

� Because text and data are relocated independently and
text is read–only, function calling conventions require a
pointer to the data of a module.

� The pointer is the TOC pointer in R2.  All data references
are computed with respect to TOC pointer.

� Each module has a separate TOC pointer.

� Intra–module calls do not need to modify TOC pointer.

� Inter–module calls must save current value of R2, load
new value, and restore old value when function returns.

� Function descriptors are tuples <code, data>.



20  Copyright IBM Corp. 1996

Generated Code

� Call to function defined in same module:

A()
{

B();
}

� Compiler generates the call as

bl .B
nop

� Pictorial view of module after linking

Module #1

B()
{
}

A()
{

B();
}

bl .B

� Nop is not modified.

� Call cannot be rebound at exec time.



21  Copyright IBM Corp. 1996

Generated Code

� Call to imported function:

B()
{

W();
}

� Compiler generates the call as

bl .W
nop

� Pictorial view of modules at runtime.

Module #1

W()
{
}

B()
{

W();
}

bl .W

Glue Code

Module #2

TOC Pointer
Function Descriptor

Indirect Branch



22  Copyright IBM Corp. 1996

Generated Code: Glue Code

� Glue code

� saves R2 in stack

� loads new value of R2 from function descriptor

� loads code address from function descriptor into a
register and branches indirectly

� When function returns, nop instruction is converted by
linker to instruction to reload the old value of R2 from the
stack.

� Call can be rebound, but not with standard AIX 4.1.



23  Copyright IBM Corp. 1996

Shared Objects at Load Time

� Text loaded once at common system–wide address.

� Always position–independent

� Text section is backed to the file and requires no paging
space

� Exception: NFS files

� The linker collects TOC pointers and function
descriptors to reduce the number of pages that need to
be touched during relocation.

� Data section of a shared object is prerelocated.

� Data section is loaded at common system–wide
address.

� Multiple prerelocations are possible if different
dependent modules are needed.



24  Copyright IBM Corp. 1996

System Loader

� Loads a module and its dependents recursively.

� Resolves symbols––each symbol must be found in its
appropriate defining module.

� Deferred imports are not resolved at exec time.

� Relocates references.

� Data sections for shared objects with prelocations need
no additional relocation.  They are map–copied.



25  Copyright IBM Corp. 1996

Performance Benefits

� Text pages demand paged.

� Prerelocated data pages demand paged––no work is
done at load time to fix up shared library data pages.

� Symbol resolution is done at load time by imported
module.

� Searching all loaded modules for definitions not
required.  Only a single module can possibly define a
symbol.

Copy 

Copy 
Prerelocated

copied to paging space when referenced

Module in File System

.text .data

function descriptors TOC

Original

mmap()



26  Copyright IBM Corp. 1996

Inhibiting Use Of Prelocations

� Modules without “read other” permission are loaded
privately in a process’s address space, not in the shared
library, and so prerelocation is not computed.

� Modules that depend on privately loaded modules
cannot be prerelocated.

� Modules that depend on the main program cannot be
prerelocated.



27  Copyright IBM Corp. 1996

Limitations Of Aix Shared Objects

� No run time linking.

� Intra–module references are fixed at link time.

� Inter–module references are associated with shared
objects with specific names.  Only LIBPATH setting can
affect module that is used.

� Undefined symbols are not allowed, even if symbols are
never used.



28  Copyright IBM Corp. 1996

New Features of AIX 4.2

� Runtime linking

� libdl.a routines

� init/fini routines

� –binitfini option

� –G flag

� Shorthand notation for building shared objects when
runtime linking is being used.

� –brtl option to enable runtime linking for a module

� Loading of archive members allowed

� . and .. imports

� –bexpall/–bnoexpall options



29  Copyright IBM Corp. 1996

New Features...

� Visibility attributes

�  symbolic/non–symbolic

� global or per symbol

� –bdynamic, –bstatic toggles

� –bautoexp

� rtl_enable command

� –bipath/–bnoipath options

� –brtllib/–bnortllib



30  Copyright IBM Corp. 1996

Runtime Linking

� Implemented as part of startup code in user space, not
part of system loader.

� Behavior of existing programs unaffected.

� Runtime linker rebinds references to definitions before
main() or init routines are called.

� Any imported symbol can be rebound.

� Intra–module references can only be rebound for
modules that were linked appropriately.

� By default, function references cannot be rebound.

� By default, variable references can be rebound.

� Definition used is first in breadth–first search order.

� Behavior meets draft ASPEN spec.



31  Copyright IBM Corp. 1996

libdl.a Routines

� Standard routines dlopen(), dlclose(), dlsym(), dlerror().

� May be used with or without runtime linking.

� Use dlopen(NULL, ...) to find symbols in entire process.

� Behavior meets draft ASPEN spec.



32  Copyright IBM Corp. 1996

Init/Fini Routines

� Each module can have its own set of routines.

� Init routines called when module loaded, including at
exec time.  Main program must be linked on AIX 4.2 for
init routines to be called.

� Modules are initialized in breadth–first search order.

� Init routines for a given module are called in priority
order.

� Fini routines called when module physically unloaded, or
when exit() is called.  When exit() is called, fini routines
called after atexit() routines.

� Note: Calling unload() may not remove the module if it is
still being used by other modules in the process.

� Fini routines not called if _exit() called or process exits
abnormally.

� Fini routines are called in reverse order.



33  Copyright IBM Corp. 1996

New Flag: –G

� Shorthand notation for creating shared objects when
runtime linking is being used.

� Equivalent to:

–berok –brtl –bnortllib –bnosymbolic
–bnoautoexp –bM:SRE

� If you choose to define all symbols, you can link with

–G –bernotok

This allow you to detect symbols that should have been
defined in the shared object itself.



34  Copyright IBM Corp. 1996

New Options: –brtl/–bnortl

� The –brtl option implies –brtllib, –bsymbolic

� In addition

� All shared objects listed on command line (that are
not archive members) are listed as dependent
modules, preserving the command line order.

� When used with –berok option, associates
undefined symbols with the dummy import file name
“..”.  These symbols must be resolved by the runtime
linker.

� Allows *.so files to be found with –l flag.

� Hint: You can use –brtl –bnortllib if you want .so
files but don’t want runtime linking. Do not use
–berok option in this case.

� When used with the –bautoexp option, causes certain
symbols to be exported automatically.



35  Copyright IBM Corp. 1996

Loading of Archive Members
Allowed

� A new flag, L_LOADMEMBER, may be passed to load()
and loadAndInit().

� A new flag, DL_LOADMEMBER, may be passed to
dlopen().

� Member name is surrounded by parentheses and
concatenated with file name.

� Examples:

load(”lib1.a(shr.o)”, L_LOADMEMBER,
NULL);

loads member shr.o from archive lib1.a.

load(”lib2.o()”, L_LOADMEMBER, NULL);

loads file lib2.o.

load(”lib3.o(shr.o)”, 0, NULL);

loads file ”lib3.o(shr.o)”.



36  Copyright IBM Corp. 1996

New Import File Name

� . imports

� Using “.” as an import file name in an import file indicates
that the symbol should be defined in the main
executable:

#! .
foo

� The system loader resolves these symbols.  The runtime
linker is not needed. The main program must still export
foo.

� Modules importing symbols from “.” cannot have
prerelocations.



37  Copyright IBM Corp. 1996

New Import File Name

� .. imports

#! ..
foo

� Using “..” as an import file name in an import file indicates
that the symbol should be resolved by the runtime linker.
At load time, foo  must be defined by some module or
load fails.

� The system loader ignores symbols imported from “..”



38  Copyright IBM Corp. 1996

New Options: –bexpall/–bnoexpall

� Exports almost all symbols.

� Exports all global symbols except

� imported symbols

� unreferenced symbols defined in archive members

� symbols beginning with an underscore

� You may export additional symbols by listing them in an
export file.

� Some existing programs, such as makeC++SharedLib,
generate export lists.

� If you have a well–defined interface, an explicit export list
is preferable.



39  Copyright IBM Corp. 1996

Visibility (Symbolic/Nonsymbolic)

� On a global or per–symbol basis, can control whether
intra–module references can be rebound.

� Symbolic

� References cannot be rebound

� Nosymbolic

� References can be rebound

� Nosymbolic–

� For variables, just like nosymbolic

� For functions, direct calls cannot be rebound, but
calls with function pointers can be rebound. Calls
with function pointers are used if

� compiler option –qinlglue is used

� pointer–to–function variable is used.



40  Copyright IBM Corp. 1996

Visibility (Symbolic/Nonsymbolic)

� Use –bsymbolic/–bnosymbolic/–bnosymbolic– to
specify visibility for all symbols.

� Exception:  The default visibility for BSS symbols
is “nosymbolic”, even if one of these options has
been specified.

� Visiblity for specific symbols can be specified in an
export file.



41  Copyright IBM Corp. 1996

New Keywords in Import/Export
Files

� To control the visibility of individual symbols, new
keywords are allowed in export files.

� Existing keywords ’svc’ and ’syscall’ still exist and are
used when linking kernel extensions.

� Keywords ’symbolic’, ’nosymbolic’, and ’nosymbolic–’
affect the visibility of individual symbols.

� Keyword ’list’ may be used to enter a symbol in the loader
section symbol table without marking it as imported or
exported.  (No AIX program uses this capability).

� Keywords ’cm’ and ’bss’ are used in import file in
conjunction with the –bautoexp option.  When these
keywords are used in export files, they mean the same
as ’nosymbolic’.



42  Copyright IBM Corp. 1996

New Options: –bdynamic/–bstatic

� Control whether shared objects used as input files
should be treated as regular object files.

� These options are toggles that can be used repeatedly.

� When –bdynamic is in effect, shared objects are used in
the usual way.

� When –bstatic is in effect, shared objects are treated as
regular object files.

� In addition, when –brtl is specified and –bdynamic is in
effect, the –l flag will search for files ending in ”so” as well
as in ”a”.



43  Copyright IBM Corp. 1996

–bdynamic/–bstatic...

� Example:

cc –o main main.o –bstatic –lmylib
–Lmylibdir –bdynamic

� File libmylib.a will be processed as a regular object
file.

� File libc.a (which is always specified by the ’cc’
command), will be processed as a shared object.

� Example:

cc –o main main.o –brtl –llib1 –L/dir1
–L/dir2

� will search for

� /dir1/liblib1.so

� /dir1/liblib1.a

� /dir2/liblib1.so

� /dir2/liblib1.a



44  Copyright IBM Corp. 1996

New Options:
–bautoexp/–bnoautoexp

� Use to automatically export symbols in a few limited
cases. The default is –bautoexp.

� Example

� You are using a shared object that imports “foo” from
“.”, that is, from the main executable.  you define “foo”
in your main program.  To avoid having to write an
export file when linking your main program, use the
command line:

cc –o main main.o –lfoo

� Symbol foo will be exported automatically. Runtime
linker is not needed in this case.



45  Copyright IBM Corp. 1996

New Command: rtl_enable

� Relink non–stripped modules to enable runtime linking.

� Intra–module references cannot be rebound by the
runtime linker unless the module is built appropriately.

� Shared objects shipped with AIX are not enabled for
runtime linking.



46  Copyright IBM Corp. 1996

rtl_enable...

� Example:

� You want to link programs that use your version of
malloc().

� Create a new instance of libc.a

rtl_enable –o /usr/local/lib/libc.a
/lib/libc.a

� Now link your program

cc ... mymalloc.o –L /usr/local/lib
–brtl –bE:myexports

where mymalloc.o defines malloc() and myexports
causes malloc to be exported from your main
program.

� Calls to malloc from within libc.a will now go to your
program.

� Important : If you omit –brtl, no runtime linking will take
place.  The modified libc.a will still work, but performance
will be affected by the indirect branches.



47  Copyright IBM Corp. 1996

New Options: –bipath/–bnoipath

� If you specify a full path for a shared object on the
command line, the full path is saved in the loader section
import file strings.

� For example

cc –o main main.o dir/mylib.so
/usr/lib/otherlib.a

will cause full paths to be saved for mylib.so and
otherlib.a.  At load time, the loader will always use these
full paths to find the shared objects.

� If you use the –bnoipath option, only the base names will
be saved.



48  Copyright IBM Corp. 1996

New Options: –brtllib/–bnortllib

� Implied by –brtl, so this option almost never needs to be
specified explicitly.

� Adds a reference to runtime linker.

� Implies –lrtl (librtl.a contains the runtime linker.)

� Main program must be linked with –brtllib if runtime
linking is being used.

� Other modules do not require –brtllib option, but it is
harmless.

� Causes runtime linker to be called at exec time and after
load() calls.



49  Copyright IBM Corp. 1996

Common Errors

� Using ’nm’ to see if a symbol is defined in a main object.

� Example:

main() {
PRINT();

}

$ cc main.c

results in

ld: 0711–317 ERROR: Undefined symbol: .PRINT
ld: 0711–345 Use the –bloadmap or –bnoquiet option
to obtain more information.
$ nm /usr/lib/libc.a | grep PRINT
.PRINT               T     605948

� Only exported symbols are visible.  You should use
dump to see what symbols are exported.

$ dump –Tv /usr/lib/libc.a | grep PRINT
$



50  Copyright IBM Corp. 1996

Common Errors

� Using –berok (or deferred imports) indiscriminantly

� Resolving deferred imports is slow.

� When you build shared objects, link with all avaiable
shared objects that your shared object will need.

� If necessary, list symbols as deferred imports in an
import file.



51  Copyright IBM Corp. 1996

Diagnosing Problems

� To see the dependent modules of a given module, use
the command

dump –Hv

� To see what modules are actually loaded by an
executable, you can use the ’map’ subcommand in dbx.

$ dbx /bin/ls
Type ’help’ for help.
reading symbolic information ...warning:
no source compiled with –g
(dbx) map
Entry 1:
   Object name: ls
   Text origin:     0x10000000
   Text length:     0x46f8
   Data origin:     0x20000968
   Data length:     0x5e0
   File descriptor: 0x7
Entry 2:
   Object name: /usr/lib/libc.a
   Member name: meth.o
   ...



52  Copyright IBM Corp. 1996

Diagnosing Problems...

� When a linking failure occurs, use the following options
to assist in your diagnosis:

� –bloadmap:<file>

� –bmap:<file>



53  Copyright IBM Corp. 1996

Common Problems

� Main program defines symbol that needs to be imported
by shared object.

� 4.1 solutions:

� If main program is called ’foo’, link shared object with
import file

#! foo
xx

� Use deferred imports:

#!
xx

� Use loadbind() to resolve deferred imports.

� Put xx in a separate object.  Link both main program
and other object with new shared object.



54  Copyright IBM Corp. 1996

Common Problems...

� 4.2 solution:

� Use . import

#! .
xx

� System loader handles import.  Runtime linker is
not needed.

� Important:  Importing symbols from the main
program can affect performance. Prerelocations
for modules importing from the main program
cannot be created.



55  Copyright IBM Corp. 1996

Common Problems...

� Defining module for a symbol is not known when building
another module:

� 4.1 solution

� Deferred imports and loadbind() calls.

� hard to manage

� Cannot be sure symbols are resolved.

� Using with C++ static constructors hard to
manage.

� 4.2 solution

� .. imports

#! ..
xx

� Runtime linker must be used.  Imports from “..”
imports are ignored by system loader.
Prerelocations can still be used.



56  Copyright IBM Corp. 1996

Common Problems...

� Using nlist().

� All modules are relocated when loaded.  The symbol
table value returned cannot by nlist() cannot be used
directly.

� Text and data sections are relocated
independently––the n_scnum field must be examined to
compute relocation.  (BSS relocation amount is the
same as the data section relocation amount.)

� Use loadquery() to find load–time origins of text and data
sections.

� ldinfo_textorg is the beginning of the mapped
module

� ldinfo_dataorg is the actual beginning of the data



57  Copyright IBM Corp. 1996

Common Problems...

� Data Relocation Amount:

Load–time data origin

from loadquery

– link–time data origin

from s_vaddr field of data–section header

� Link with –D0 flag (–Wl,–D0) to set link–time data origin
to 0.

� Text Relocation Amount:

Load–time data origin

from loadquery

– link–time text origin

from s_vaddr field of text–section header

+ offset in the module of the beginning of text section

from s_scnptr field of text–section header

� See Listing 2 for an example



58  Copyright IBM Corp. 1996

Common Problems...

� Not specifying “extern”

int errno;
main(int argc, char *argv[])
{

open(”no file”, 0);
printf(”errno = %d\n”, errno);

}

cc –o main main.c

� This program will print

errno = 0

� main program has one instance of errno

libc.a(shr.o) has another instance



59  Copyright IBM Corp. 1996

Common Problems...

� Fortran common blocks

� Cannot say “extern” so definition in shared object must
be first definition seen.

� Export “#BLNK_COM” from shared object.

� Link with command:

xlf –o main –lshr main.o

� See Listing 1 for an example



60  Copyright IBM Corp. 1996

Searching for Modules

� Search order at exec time:

� Directories in LIBPATH environment variable

� Libpath information in main program

� Libpath information in module whose dependents
are being sought

� Search order at load time:

� For module specified in load() call and its
dependents

� If L_LIBPATH_EXEC is set, use directories from
the first two steps above

� Use explicit argument passed to load()

� If no explicit argument was passed to load(), use
the current value of LIBPATH

� For dependents of loaded module only, add

� Libpath information in module whose
dependents are being sought



61  Copyright IBM Corp. 1996

Listing 1

main.f:
        program main
        common  i
        integer*4 i
        i = –20
        write(6,1) i
1       format( ’Data value i = ’, I8 )
        call fn1()
        write(6,2) i
2       format( ’Data value i = ’,I8 )
        end

sub.f:
        subroutine fn1()
        common  i
        integer*4 i
        write(6,1)
1       format( ’Changing i to 457’ )
        i = 457
        return
        end

sub.exp:
fn1
#BNLK_COM

Commands:
xlf –c main.f
xlf –c part1.f
ld –o shr.o part1.o –bE:part1.exp –bnoentry –lxlf90 –bM:SRE
rm –f libshr.a
ar cr libshr.a shr.o
xlf –o main main.o –lshr –L.
xlf –o main1 –lshr main.o –L.

Duplicate symbol warning is expected from the last command.

Output from main:
Data value i =      –20
Changing i to 457
Data value i =      –20

Output from main1:
Data value i =      –20
Changing i to 457
Data value i =      457



62  Copyright IBM Corp. 1996

Listing 2

nlist.c:

#include <stdio.h>
#include <nlist.h>
#include <xcoff.h>
#include <sys/types.h>
#include <sys/ldr.h>
static int data_reloc;
static int text_reloc;
static int sntext;
static void
get_reloc(char *module) {
    char *h;
    char buffer[1024];
    struct ld_info *info;
    h = (char *)load(module, L_LIBPATH_EXEC, ””);
    loadquery(L_GETINFO, buffer, 1024);
    for (info = (struct ld_info *)(&buffer[0]);

 info;
 info = (info–>ldinfo_next == NULL ? NULL

 : (struct ld_info *)((char *)info + info–>ldinfo_next))) {
if ((char *)(info–>ldinfo_dataorg) <= h
    && (char *)info–>ldinfo_dataorg + info–>ldinfo_datasize > h) {
    FILHDR  *filhdr = (FILHDR *)(info–>ldinfo_textorg);
    AOUTHDR *aouthdr = (AOUTHDR *)((char *)filhdr + sizeof(FILHDR));
    SCNHDR  *scnhdrs = (SCNHDR *)((char *)aouthdr

  + filhdr–>f_opthdr);
    sntext = aouthdr–>o_sntext;
    text_reloc = (int)info–>ldinfo_textorg

– scnhdrs[aouthdr–>o_sntext–1].s_vaddr
    + scnhdrs[aouthdr–>o_sntext–1].s_scnptr;

    data_reloc = (int)info–>ldinfo_dataorg
– scnhdrs[aouthdr–>o_sndata–1].s_vaddr;

    return;
}

    }
}
main(int argc, char *argv[]) {
    struct nlist mynl[2];
    get_reloc(argv[1]);
    mynl[0].n_name = argv[2];
    mynl[1].n_name = NULL;
    nlist(argv[1], mynl);
    printf(”Symbol table value for %s is %x, load–time address %x\n”,

   mynl[0].n_name,
   mynl[0].n_value,
   mynl[0].n_value + (mynl[0].n_scnum == sntext

      ? text_reloc : data_reloc));
}


